BBA 67109

CONCERNING THE FORMATION OF SINGLET O₂ DURING THE DECOMPOSITION OF H₂O₂ BY CATALASE

DAVID J. T. PORTER and L. L. INGRAHAM

Department of Biochemistry and Biophysics, University of California, Davis, Calif. 95616 (U.S.A.)

(Received August 3rd, 1973)

SUMMARY

2,5-Diphenylfuran was used in a spectrophotometric assay for singlet O_2 to determine if this species were present during the reaction of catalase $(H_2O_2:H_2O_2)$ oxidoreductase, EC 1.11.1.6) with 2H_2O_2 . Since 2,5-diphenylfuran is a better singlet O_2 trap in 2H_2O than in H_2O , all measurements have been made in 2H_2O . Under these conditions less than 0.5% of the total O_2 formed in the decomposition of 2H_2O_2 by catalase was released from the enzyme as singlet O_2 .

INTRODUCTION

The decomposition of H₂O₂ by catalase (H₂O₂:H₂O₂ oxidoreductase, EC 1.11.1.6) has been proposed to occur either by two single-electron steps [1] or by a single hydride transfer [2, 3]. If there were no mechanism available for the enzyme to relax singlet O2, the latter mechanism predicts that O2 would be released from the enzyme in the excited-singlet state. Using N₂ as a trap for singlet O₂, Anbar [4] detected a species in the catalase reaction that exhibited the reactivity of singlet O_2 . Jones and Suggett [3] have subsequently quoted this work as supporting evidence for a hydridetransfer mechanism. Unfortunately, the molecular dimensions of N₂ are similar to those of H₂O₂, making it probable that N₂ is capable of not only reacting with singlet O₂ free in solution but also reacting at the active site of the enzyme. Consequently these experiments do not distinguish between a "bound type" singlet O₂ and singlet O₂ free in solution. More recently, Kasha and Khan [5] reported chemiluminescence during H_2O_2 breakdown by catalase and have concluded that singlet O_2 is present. However, Kearns [6] has pointed out that the mechanism of chemiluminescence in singlet O₂ reactions is not completely understood and consequently is not a good criterion to use as evidence for the presence of singlet O2. From a biological point of view it is unlikely that catalase would be fulfilling its protective role in the cell by breaking down H₂O₂ only to make the more reactive species, singlet O₂. In summary, conclusive evidence for singlet O2 release from catalase during H2O2 decomposition has not been given. It is the purpose of this paper to estimate the fraction of O₂ released as singlet O₂ in the catalase reaction using the singlet O₂ trap 2,5-diphenylfuran. Since 2,5-diphenylfuran is a relatively large molecule it is sterically restricted from the active site of catalase. Thus, unlike N_2 , 2,5-diphenylfuran will react with singlet O_2 free in solution and not with a reactive species at the active site of the enzyme.

MATERIALS AND METHODS

Catalase isolated from beef heart and twice recrystallized was purchased from Schwarz-Mann Corp. and used without further purification. 2,5-diphenylfuran was prepared by the method of Lutz and Rowlett [7] and purified by repeated recrystallizations from ethanol. (m.p. uncorrected = 89-89.5 °C, reported 89.5 °C [16].) The ultraviolet spectrum was identical to that reported by King et al. [8]. 2H_2O (99.7% atom) and 2H_2O_2 was obtaned from Biorad. All other chemicals were reagent grade.

Singlet O_2 was generated in situ by shining a 100-W G.E. CDJ bulb at right angles to the analyzing light of a Cary 14 spectrophotometer through a 535-nm cutoff filter (Corning No. CS3-68) onto a cuvette containing methylene blue [9]. The formation of the hydroperoxide of 2,5-diphenylfuran was followed by the disappearance of 2,5-diphenylfuran absorbance at 324 nm [10]. p^2H values were measured on a Corning Model 12 pH meter making a suitable correction for 2H_2O [11]. O_2 concentrations were measured with a Yellow Springs Instrument Company O_2 electrode and recorded on a Varian aerograph Model 10 recorder. The O_2 concentration in solution was taken to be 240 μ M when air saturated [22].

In a system where singlet O_2 is an intermediate, the kinetics of the reaction of this species with 2,5-diphenylfuran (T) is described by the following scheme:

$$\frac{V_0}{\begin{vmatrix} k_2[T] \end{vmatrix}} {}^{3}O_2 \tag{1}$$

$$\frac{V_0}{k_2[T]} {}^{4}O_2 \tag{2}$$

where V_0 is the rate of formation of singlet O_2 (1O_2), k_1 is the first-order relaxation of singlet O_2 to triplet O_2 (3O_2) by solvent, and $k_2[T]$ is the reaction of singlet O_2 with 2,5-diphenylfuran to yield the hydroperoxide, TO_2 . In this scheme the steady-state concentration of singlet O_2 is

$$[{}^{1}O_{2}]_{ss} = \frac{V_{0}}{k_{1} + k_{2}[T]}$$
 (2)

The quantity β is defined as the ratio of k_1 to k_2 . If the concentration of T were equal to β , then 50% of the singlet O_2 formed through V_0 in Eqn 1 would be trapped as TO_2 . Under conditions when β is much greater than the concentration of T Eqn 2 reduces to

$$[{}^{1}O_{2}]_{ss} = \frac{V_{0}}{k_{1}} \tag{3}$$

If V_0 is constant, the change of concentration of T with time will be a first-order process described by

$$\frac{\mathrm{dT}}{\mathrm{d}t} = -k_2[^1O_2]_{ss}[T] \tag{4}$$

Substituting Eqn 3 into Eqn 4 one obtains

$$\frac{\mathrm{dT}}{\mathrm{d}t} = -k_{\mathrm{obs}}[\mathrm{T}] \tag{5}$$

where

$$k_{\text{obs}} = \frac{V_0}{\beta} \tag{6}$$

Since the β value of 2,5-diphenylfuran is known to be $4.6 \cdot 10^{-4}$ M in H_2O [13], the rate of singlet O_2 formation in H_2O can be calculated from the k_{obs} for 2,5-diphenylfuran disappearance and Eqn 6. Conversely if V_0 is independent of solvent the β value of 2,5-diphenylfuran can be obtained in a different solvent system by the ratio of k_{obs} in the new solvent with that in H_2O . This is formulated in Eqn 7

$$\beta_{x} = \frac{\beta k_{\text{obs}}}{k_{\text{obs}}^{x}} \tag{7}$$

where β and k_{obs} are for H₂O and $k_{\text{obs}}^{\text{x}}$ is the measured rate of 2,5-diphenylfuran disappearance in the unknown solvent. For Eqn 7 to be valid β must be greater than the 2,5-diphenylfuran concentration.

RESULTS

Eqn 5 demonstrates that the smaller the β value the more sensitive 2,5-diphenylfuran will be as a singlet O_2 trap. Recently, Merkel and Kearns [9] have shown that the lifetime of singlet O_2 is 10-fold longer in 2H_2O than it is in H_2O . If there were little effect of 2H_2O on k_2 , the β value of 2,5-diphenylfuran would be significantly reduced in 2H_2O . Since catalase is known to be active in 2H_2O , it was of interest to measure the β value of 2,5-diphenylfuran in 2H_2O .

Table I presents β values for 2,5-diphenylfuran determined in 2H_2O with light and methylene blue as the source of singlet O_2 . The following assumptions have been made to calculate these values. First it is assumed that V_0 is constant and does not change with solvent conditions. This assumption has been used and justified by previous workers [9, 13]. In addition, it is assumed that V_0 will not change from the decrease of O_2 due to 2,5-diphenylfuran oxidation during each experiment. This is a reasonable assumption since the 2,5-diphenylfuran concentration is less than 2% of the total O_2 concentration. Finally it is assumed that β is greater than the concentration of 2,5-diphenylfuran. The fourth column of Table I is the ratio between the calculated β values and the initial 2,5-diphenylfuran concentration. This ratio is always greater than twenty and proves that the original assumption was valid.

The results of Table I show that the β value for 2,5-diphenylfuran in 2H_2O is 8.7 times less than the β value in H_2O . Also 0.01 M phosphate buffer increases the β value slightly while catalase and 2H_2O_2 have little effect on β . With the values of Table I and the k_{obs} for 2,5-diphenylfuran disappearance it is now possible to calculate V_0 from Eqn 6 for a system forming singlet O_2 . This is now applied to the catalase reaction.

Since the β value of 2,5-diphenylfuran in ${}^{2}H_{2}O$ is less than it is in $H_{2}O$, the

TABLE I

β VALUES FOR 2,5-DIPHENYLFURAN UNDER VARIOUS REACTION CONDITIONS

In our hands a saturated solution of 2,5-diphenylfuran in 2H_2O was 0.55 μ M. The concentration of 2,5-diphenylfuran used in these experiments was 2.6 μ M. To obtain this concentration, a concentrated solution of 2,5-diphenylfuran was made in acetone. A small aliquot of the acetone solution was added to the solvent to give a 2.6- μ M 2,5-diphenylfuran solution. 2,5-diphenylfuran precipitation was slow as judged by disappearance of 324-nm absorbance. The final acetone concentration was 13 mM. $k_{\rm obs}$ is first-order rate constant for 2,5-diphenylfuran disappearance using methylene blue ($A_{662} = 0.22$) and light as a source of singlet O₂. Solutions were air saturated at 23 °C. Average of three experiments. 2,5-diphenylfuran concentrations calculated using $\varepsilon_{324} = 29\,000\,\mathrm{M}^{-1}\cdot\mathrm{cm}^{-1}$ from ref. 8.

Solvent	k_{obs} (s ⁻¹)	β (M)	eta/2,5-diphenylfuran
H ₂ O	2.48 · 10-3	4.58 · 10-4*	172
² H ₂ O	$2.15 \cdot 10^{-2}$	$5.27 \cdot 10^{-5**}$	19
$^{2}\text{H}_{2}\text{O} + 0.01 \text{ M}$ potassium phosphate (pH 7.1) $^{2}\text{H}_{2}\text{O} + 0.01 \text{ M}$	1.33 · 10-2	8.35·10 ^{-5**}	30
potassium phosphate (960 μ M 2 H ₂ O, pH 7.1) 2 H ₂ O + 0.01 M	1.20 · 10-2	9.45 · 10-5**	34
potassium phosphate (1 μ l/ml catalase, pH 7.1)	1.50 · 10-2	7.57 · 10 - 5 * *	27

^{*} β value taken from reference 13.

conditions chosen for trapping singlet O₂ in the catalase reaction are 0.01 M phosphate buffer in ²H₂O at a pH of 7.1. The results of adding catalase to ²H₂O₂ in the presence of 2,5-diphenylfuran are shown in Fig. 1. During the course of O₂ evolution in the catalase decomposition of ²H₂O₂ there is essentially no disappearance of absorbance at 324 nm. Since the β value of 2,5-diphenylfuran in this solvent is known from Table I, a predicted rate of 2,5-diphenylfuran disppearance can be calculated. If one assumes that V_0 or rate of singlet O_2 production is equal to the rate of O_2 production measured on the O₂ electrode, the predicted decay of 2,5-diphenylfuran is given by the dashed line in Fig. 1 where the first-order rate constant describing 2,5-diphenylfuran disappearance is V_0/β . Also shown in Fig. 1 is the decrease of 2,5-diphenylfuran if only 5% of the O_2 released from the enzyme were singlet O_2 . If less than 0.5% of the total O_2 formed from ²H₂O₂ were singlet O₂, we would observe no decrease in 2,5-diphenylfuran absorbance. To ensure that 2,5-diphenylfuran was acting as a singlet O₂ trap in the above experiment, methylene blue was added at the end of the reaction and light was directed onto the cuvette. The rate of 2,5-diphenylfuran disappearance was that predicted if no catalase or ²H₂O₂ had been added to the reaction mixture. Since Table I shows that neither catalase nor ${}^{2}H_{2}O_{2}$ effect the β value of 2,5-diphenylfuran in ²H₂O, we conclude from our results with catalase that less than 0.5% of the total O_2 released by catalase during its reaction with 2H_2O_2 is singlet O_2 .

CONCLUSION

Table I and Fig. 1 demonstrate that only an extremely small fraction, if any, of the total O₂ released in the catalase reaction is free singlet O₂. Even though no

^{**} β values calculated by Eqn 7 in text.

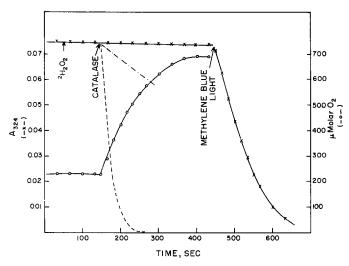


Fig. 1. Demonstration that no singlet O_2 is experimentally detectable in the decomposition of 2H_2O_2 by catalase. Two experimental traces are shown. That labelled with the crosses $(-\times -)$ refers to the absorbance of 2,5-diphenylfuran at 324 nm. The trace labelled with the open circles $(- \bigcirc -)$ refers to the production of O_2 measured on the O_2 electrode. Initially 2.6 μ M 2,5-diphenylfuran was added to 0.01 M potassium phosphate buffer in 2H_2O at a pH 7.1. At 50 s 0.940 mM 2H_2O_2 was added followed by 0.5 μ g/ml catalase at 150 s. Finally, at 450 methylene blue ($A_{662}=0.32$) was added and light directed onto the cuvette to generate singlet O_2 . The broken line is the predicted curve if 5% of the total O_2 were released as singlet O_2 while the dashed line is calculated if all the O_2 were released as singlet O_2 . Values used to calculate these lines are: β , 84 μ M (average of the three β values in 2H_2O and 0.01 M potassium phosphate given in Table I) and V_0 , = 3.4 μ M O_2 /s if all O_2 released is singlet O_2 or 0.17 μ M O_2 /s if 5% of the O_2 is released as singlet O_2 . Eqn 6 was used to calculate k_{obs} .

singlet O_2 is detected during the decomposition of H_2O_2 by catalase, it cannot be concluded that the mechanism of catalase action is two one electron transfers. There are two reasons for this, Merkel and Kearns [9] have shown that the lifetime of singlet O₂ is extremely dependent upon solvent. In particular the lifetime of singlet O₂ is directly correlated with the extinction coefficient of the solvent at 7880 cm⁻¹. If a hydridetransfer mechanism occurred in the catalase reaction, the enzyme might quench the singlet O₂ formed by placing a group with absorbance at 7880 cm⁻¹ near the active site. For example, an amine similar to trimethylamine which quenches singlet O₂ with a bimolecular rate constant of $1.2 \cdot 10^7 \,\mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$ [14] may be near the active site of the enzyme. Since the V of catalase is $6.6 \cdot 10^7 \,\mathrm{s}^{-1}$ [15] the effective concentration of amine in this case would have to be over 100 M for effective quenching of singlet O₂ to occur. The second effect that could account for the production of triplet O₂ in the catalase reaction even though a hydride-transfer mechanism is operative may be due to the heme center itself. If a two-electron transfer mechanism were operative, the resultant O₂-iron complex could dissociate into triplet O₂ and quartet iron. Because of large spin-orbital coupling [16] the quartet iron may relax rapidly to the sextet state for another reaction cycle.

In summary, we have found that the only form of O_2 released free in solution from catalase during H_2O_2 breakdown is triplet O_2 . Because of several possible relaxation pathways for singlet O_2 this result does not distinguish between a two-electron or two single-electron transfer mechanisms.

ACKNOWLEDGMENTS

D.J.T.P. gratefully acknowledges support from the N.I.H. Fellowship number 1 F02 AM 53193-01 and L. L. Ingraham acknowledges support by N.I.H. Grant number GM 08285.

REFERENCES

- 1 Weiss, J. (1937) J. Phys. Chem. 41, 1107
- 2 Ingraham, L. L. (1962) in Biochemical Mechanisms, p. 70, John Wiley and Sons, Inc., NewYork
- 3 Jones, P. and Suggett, A. (1968) Biochem. J. 110, 621-629
- 4 Anbar, M. (1966) J. Am. Chem. Soc. 88, 5924-5926
- 5 Kasha, M. and Khan, A. U. (1970) Ann. N.Y. Acad. Sci. 171, 5-23
- 6 Kearns, D. R. (1971) Chem. Rev. 71, 395-427
- 7 Lutz, R. E. and Rowlett, J. R. (1948) J. Am. Chem. Soc. 70, 1359-1363
- 8 King, S. M., Bauer, C. R. and Lutz, R. E. (1951) J. Am. Chem. Soc. 73, 2255-2256
- 9 Merkel, P. B. and Kearns, D. R. (1972) J. Am. Chem. Soc. 94, 7244-7253
- 10 Gollnick, K. and Schenck, G. O. (1967) in 1,4-Cycloadditions Reactions (Hammer, J., ed.), pp. 255-287, Academic Press, New York
- 11 Salomaa, P., Schaleger, L. L. and Long, F. A. (1964) J. Am. Chem. Soc. 86, 1-7
- 12 Handbook of Chemistry and Physics (1954), p. 1523, 34th edn, Chemical Rubber Publishing Co., Cleveland, Ohio
- 13 Young, R. H., Wehrly, K. and Martin, R. L. (1971) J. Am. Chem. Soc. 93, 5774-5779
- 14 Young, R. H. and Martin, R. L. (1972) J. Am. Chem. Soc. 94, 5183-5185
- 15 Jones, P. and Suggett, A. (1968) Biochem. J. 110, 617-620
- 16 Gouterman, M. (1961) J. Mol. Spectrosc. 6, 138